Abstract

AbstractThe mass transfer is investigated for physical absorption of oxygen in water for varying interfacial areas as well as the influence of suspended glass beads and activated carbon. Under higher rotational speed, the volumetric mass transfer coefficient as well as the mass transfer coefficient values increase for all specific interfacial areas due to the changes in hydrodynamics. The configuration of the free gas‐liquid interface is of minor relevance. In the presence of glass beads, the mass transfer is reduced compared to physical adsorption, whereas an enhancement of the mass transfer can be observed in the presence of activated carbon. This indicates that the mobility of the gas‐liquid interface is the determining factor. The renewal of the fluid elements is increased by adsorption of surfactants on the surface of activated carbon, leading to an improved mass transport.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.