Abstract

BackgroundPeroneus longus acts as a foot evertor and pronator, thus ensuring stability of the talocrural joint by curbing inversion movement of the rearfoot. Increased activation of the peroneus longus muscle in the stance phase could have a stabilising effect on the ankle joint. This study aimed to determine whether the activity of the peroneus longus muscle could be increased by the targeted use of a specially formed lateral pressure element in a customised orthopaedic insole.MethodsThis was a laboratory-based study that utilised a randomised crossover design. Thirty-four healthy participants walked along a walkway in neutral footwear wearing a control insole or a sensorimotor insole with a lateral pressure point adjacent to the tendon of the peroneus longus muscle. The electromyographic muscle activity of the peroneus longus and tibialis anterior muscles was measured using surface electromyography. Contact with the ground was recorded via two pressure sensors under the sole of the shoe. Muscle activity during the stance phase was analysed in the time and amplitude domains and compared statistically with paired t-tests for both insole types.ResultsIn 27 out of the 34 participants, an additional activity peak of the peroneus longus muscle was observed in the loading response phase with the sensorimotor insole, which reached its maximum at 29.7 % (±4.5 %) of the stance phase. When averaged over all 34 participants, the integrated electromyographic output for the peroneus longus in the mid-stance phase revealed a significant higher activity (p < 0.001, post hoc power = 0.98, effect size: Cohen’s d = 0.71) with the sensorimotor insole (18.1 ± 11.3 % MVCs) than with the control insole (11.2 ± 7.7 % MVCs). No significant effects were established for the other gait phases or for the tibialis anterior.ConclusionsAn increase of muscle activity of the peroneus longus muscle was observed during the loading response and mid-stance phase, when orthopedic insoles with a lateral pressure point were worn. We conclude that the pressure point changes afferent information and leads to an increased peroneus longus activation in the time interval in which the pressure point exerted pressure on the peroneal tendon.

Highlights

  • Peroneus longus acts as a foot evertor and pronator, ensuring stability of the talocrural joint by curbing inversion movement of the rearfoot

  • Increased inversion movements of the calcaneus in the landing phase of the foot when walking, running, or after jumping, which are not controlled by such muscle activity, may be the cause of lateral sprains of the subtalar or talocrural joint [7, 8]

  • In 27 of the 34 participants, an additional activation peak of the peroneus longus muscle occurred in the loading response phase with the sensorimotor insole, which, on average, reached its maximum at 29.7 % (±4.5 %) during mid-stance (Fig. 4)

Read more

Summary

Introduction

Peroneus longus acts as a foot evertor and pronator, ensuring stability of the talocrural joint by curbing inversion movement of the rearfoot. In the loading response that follows, the body weight is shifted to the foot, the heel transitions to eversion, and pronation occurs in the midfoot area [2] In this phase, the peroneus longus acts weakly as a foot evertor and pronator, but does contribute to the stability of the talocrural joint by curbing the inversion movement of the rearfoot [3]. Increased inversion movements of the calcaneus in the landing phase of the foot when walking, running, or after jumping, which are not controlled by such muscle activity, may be the cause of lateral sprains of the subtalar or talocrural joint [7, 8]. Most ankle sprains occur when a supinating force is exerted on the foot, and simultaneously, an external rotation force is applied to the leg [8]

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.