Abstract

The performance of centrifugal compressors can be seriously affected by inlet flow distortions due to the unsatisfactory nature of the inlet configuration and the resulting inlet flow structure. Experimental tests have been carried out for the comparison of centrifugal compressor stage efficiency with two different inlet configurations, one of which is straight with constant cross-sectional area and the other a 90° curved pipe with nozzle shape. The comparative test results indicated significant compressor stage performance difference between the two different inlet configurations and the details are discussed to understand the performance behaviour of the compressor exposed to the distorted flow from the bend inlet configuration. The experimental investigation motivated the need for a new inlet design as well as a clear picture of the detailed flow field in the existing inlet design using numerical simulations. Two design approaches are reported in this paper, one of which is the location of vanes and the other the length of the curvature radius. For a more effective design method, a generalized formula is developed for the optimum position and number of vanes in such a way that each divided flow passage with vanes shares the same pressure gradient in radial direction. Numerical simulation results are presented and discussed in terms of mass-averaged parameters and flow structures, based on the comparison of flow properties at the pipe exit cross-sectional area of each design. Finally, new designs of different inlet systems are proposed to reduce the secondary flow and to provide flow as uniform as possible for a compressor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.