Abstract
Rabbit lung and liver microsomes were subjected to three procedures which decreased NADPH cytochrome c reductase activity; flavoprotein antibody, trypsin and subtilisin digestion. The effects on benzphetamine and p-nitroanisode demethylation and amine metabolic-intermediate complex formation were investigated. In general, the proteolytic digestion had a greater inhibitory effect on oxidation reactions for a given loss of NADPH cytochrome c reductase activity than did flavoprotein antibody; and of the two proteases, subtilisin, which also diminises the cytochrome b 5 reduction pathway, had a greater inhibitory effect than trypsin. Subtilisin digestion had similar effects in both liver and lung microsomes; a loss of flavoprotein without a loss of cytochrome P-450; but whereas all three oxidative reactions decreased in unison as the flavoprotein was lost in the liver, benzphetamine demethylation was less susceptible to flavoprotein depletion than the other two reactions in lung microsomes. With trypsin digestion flavoprotein was removed without loss of cytochrome P-450 only in lung microsomes; in liver microsomes the cytochrome P-450 was susceptible to tryptic degradation. In lung microsomes, benzphetamine and p-nitroanisole demethylations were less susceptible to flavoprotein loss than metabolic-intermediate complex formation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.