Abstract

The purpose of this study was to evaluate the influence of implant inclination on retention and peri-implant stresses of stud-retained implant overdentures during axial and nonaxial dislodgments. Mandibular acrylic models (n = 4) received two implants in the canine areas with 0-, 5-, 10-, and 20-degree lingual inclinations. Dentures were attached to the implants with stud connectors. Four strain gauges were bonded at buccal, lingual, mesial, and distal surfaces of each implant to monitor strains around implants. Retention values (Newton) and peri-implant stresses (microstrains, μs) were recorded during axial (vertical) and nonaxial (anterior, posterior, and lateral) dislodging. A general linear model was used to compare retention forces and implant stresses between implant inclinations and dislodging direction. In addition, a linear regression model was used to test correlation of implant stresses with confounding factors. The highest retention and implant stresses were noted with 0 degrees, followed by 5 and 10 degrees (without difference), and the lowest values were noted with 20 degrees. Anterior dislodging was associated with the highest retention and implant stresses, followed by vertical dislodging, then lateral dislodging, and posterior dislodging. Peri-implant stresses significantly correlated with dislodging direction and retention forces. Every 1 N of increase in retention forces causes 19.17 μs increase in implant stresses. Anterior dislodging was associated with the highest predicted stress values (846.0 μs), and the lowest stress values (143.41 μs) were associated with posterior dislodging. Retention forces and peri-implant stresses decreased as lingual implant inclination increased during axial and nonaxial dislodging of stud-retained implant overdentures. Peri-implant stresses were significantly correlated with dislodging direction and retentive forces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.