Abstract

Attention can be directed externally toward sensory information or internally toward self-generated information. Using electroencephalography (EEG), we investigated the attentional processes underlying the formation and encoding of self-generated mental images into episodic memory. Participants viewed flickering words referring to common objects and were tasked with forming visual mental images of the objects and rating their vividness. Subsequent memory for the presented object words was assessed using an old-new recognition task. Internally-directed attention during image generation was indexed as a reduction in steady-state visual evoked potentials (SSVEPs), oscillatory EEG responses at the frequency of a flickering stimulus. The results yielded 3 main findings. First, SSVEP power driven by the flickering word stimuli decreased as subjects directed attention internally to form the corresponding mental image. Second, SSVEP power returned to pre-imagery baseline more slowly for low- than high-vividness later remembered items, suggesting that longer internally-directed attention is required to generate subsequently remembered low-vividness images. Finally, the event-related-potential difference due to memory was more sustained for subsequently remembered low- versus high-vividness items, suggesting that additional conceptual processing may have been needed to remember the low-vividness visual images. Taken together, the results clarify the neural mechanisms supporting the encoding of self-generated information.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call