Abstract

Momentum resolved 4D-STEM, also called center of mass (CoM) analysis, has been used to measure the long range built-in electric field of a silicon p–n junction. The effect of different STEM modes and the trade-off between spatial resolution and electric field sensitivity are studied. Two acquisition modes are compared: nanobeam and low magnification (LM) modes. A thermal noise free Medipix3 direct electron detector with high speed acquisition has been used to study the influence of low electron beam current and millisecond dwell times on the measured electric field and standard deviation. It is shown that LM conditions can underestimate the electric field values due to a bigger probe size used but provide an improvement of almost one order of magnitude on the signal-to-noise ratio, leading to a detection limit of 0.011 MV cm−1. It is observed that the CoM results do not vary with acquisition time or electron dose as low as 24 e−/A2, showing that the electron beam does not influence the built-in electric field and that this method can be robust for studying beam sensitive materials, where a low dose is needed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.