Abstract

(1) Background: Though X-ray excited photodynamic therapy (X-PDT) breakthrough the bottom neck of PDT application in deep tumor by overcoming light penetration depth limitation, the quantum yield of the hydrophilic X-PDT nanoparticles (NPs) still hampered its further application in vivo. Thus, establishing a proper hydrophilic decoration method which can maximally maintain the quantum yield of X-ray excited luminescent NPs is of urgent demand. (2) Methods: We synthesized NaGdF4: [Formula: see text] (NGF) as X-ray excited luminescent NPs and conducted hydrophilic decoration by two hydrophilic ligands, polyethylene glycol-NH2 (PEG) and cysteamine (Cy) via place exchange reaction, and coupled with photosensitizer (MC540) to form a X-PDT nanosystem. We also conducted experiments in vitro and in vivo to evaluate the efficacy of the X-PDT system. (3) Results: Both PEG and Cy decoration NPs presented excellent emission intensity, which could well excite the coupled photosensitizer MC540 to generate significant X-PDT efficacy under low-dose X-ray radiation. Especially for the NGF-Cy-MC540 treatment group, the cell viability reduced to [Formula: see text]% under 0.3[Formula: see text]Gy radiation and [Formula: see text]% under only 0.1[Formula: see text]Gy radiation, which is the lowest radiation dosage in the literature reports so far. In vivo experiment showed about 36% of tumor inhibition rate under 0.3[Formula: see text]Gy X-ray. Besides, no biotoxicity was observed in NGF groups even in high concentrations, demonstrating good biocompatibility. (4) Conclusions: The hydrophilic decoration method by Cy or PEG via place exchange reaction may pave a brand new way and strategy for X-PDT further clinical application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.