Abstract

This paper presents the second part of work on the effect of hydrogen partial pressure on the hydrogenation of a terpene in a CO 2-expanded liquid. The effect of hydrogen partial pressure on the hydrogenation of β-myrcene possessing three C C bonds catalysed by alumina-supported ruthenium and rhodium was studied. Experiments were performed at various hydrogen pressures in the range from 2.0 up to 4.5 MPa at a fixed total pressure of 12.5 MPa. In all the conditions the reaction proceeded in two phases (liquid + gas), that is, the total pressure was below the critical pressure of the CO 2 + β-myrcene + H 2 system. The liquid phase volume is expanded in relation to the initial volume of β-myrcene in a fashion that is strongly dependent on the hydrogen and carbon dioxide pressures. An increase of H 2 pressure concomitantly diminishes carbon dioxide pressure, which leads to the enhancement of the liquid phase in hydrogen and a terpene. It does not direct to straightforward higher reaction rate, but surprisingly the effect of higher concentrations either hydrogen or β-myrcene is opposite. It is attributed to the fact that the hydrogenation of β-myrcene rate-controlling factor turns out to be the hydrogen to β-myrcene ratio which decreases as the hydrogen pressure increases. These unexpected appealing results present that lower pressures of hydrogen guide to higher hydrogen/β-myrcene ratios in the liquid phase, but on the other hand they also amplify the initial reaction rate constant. The obtained results are opposite to the results achieved for effect of hydrogen pressure on the Pd-catalysed hydrogenation of limonene consisting of two C C double bonds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.