Abstract
The influence of hydrogen on the mechanical and fracture properties of four martensitic advanced high strength steels was studied using the linearly increasing stress test and electrochemical hydrogen charging. The hydrogen influence increased with steel strength, decreasing charging potential, and decreasing applied stress rate. Increased hydrogen influence was manifest in (i) the decreased yield stress attributed to solid solution softening by hydrogen and (ii) the reduced macroscopic ductility, and by the change from ductile cup-and-cone fracture to macroscopically brittle shear fracture, attributed to a dynamic interaction of hydrogen with the dislocation substructure somewhat similar to the HELP mechanism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.