Abstract

Most models for transfers of radionuclides through the food chain typically assume that the radioactivity is initially deposited in chemically available forms. It is known, however, that releases of radionuclides in the form of hot particles may significantly influence their environmental transfers and uptake to the food chain. This study presents models for time changes in 90Sr and 137Cs in milk which incorporate hot particle contamination using observed rates of hot particle dissolution following the Chernobyl accident. A general equation is presented for the influence of hot particles on overall ingestion doses. As expected from previous work, fallout of hot particles significantly influences time changes in radionuclide activity concentrations in foodstuffs. It is also shown that incorporation of radionuclides in hot particles influences time-integrated ingestion doses. For a situation in which a large proportion (90–100%) of fallout is in slowly dissolving hot particles, time-integrated ingestion doses from 90Sr and 137Cs are reduced by a factor of approximately two compared to the case where all radioactivity is deposited in bioavailable forms. However, the influence of rapidly dissolving hot particles on time-integrated ingestion doses is relatively minor. Remaining significant uncertainties in dose estimates are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.