Abstract

Near-surface energy budget closure has been a trending topic in land surface processes research, especially on the underlying surfaces of heterogeneous wetlands. In this investigation, the horizontal thermal advection caused by thermal inhomogeneity over the alpine wetland is calculated based on the eddy covariance data observed at the Flower Lake observation field and WRF modelling data over the Zoige alpine wetland, China. The contribution of horizontal thermal advection to the near-surface energy closure is analysed. The results show that the mean horizontal heat advection of the Zoige wetland is 20.2 W·m−2, and the maximum value reached 55.0 W·m−2 in the summer of 2017. After introducing thermal advection into the near-surface energy balance equation, the near-surface energy closure ratio increased from 72.3% to 81.0%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.