Abstract
In this paper, nearly monodisperse Fe3O4 hollow and solid submicron spheres were synthesized using a simple solvothermal method. The TEM investigation clearly reveals the successful realization of the hollow structure of magnetite spherical particles by the method. The average diameter of the Fe3O4 hollow and solid submicron spheres is about 300 and 500 nm, respectively. The submicron spheres are composed of nanometer-sized grains, with grain sizes of 21 and 28 nm for the hollow and solid spheres, respectively. Magnetic hysteresis measurements indicate that the hollow structure has higher coercive force and lower saturation magnetization than the solid submicron spheres. Magnetization versus temperature curve shows a peak at 107 K in the zero-field-cooled (ZFC) runs for the hollow structure, which corresponds to the blocking temperature of the nanograins. The blocking temperature correlates well with the volume of the nanograins according to Stoner–Wohlfarth theory. The hollow structure exhibits the magnetic properties of individual nanograins because of the weak coupling among them. However, the above-described feature is absent in the solid spheres, due to stronger magnetic coupling between the grains.
Highlights
In this paper, nearly monodisperse Fe3O4 hollow and solid submicron spheres were synthesized using a simple solvothermal method
The TEM investigation clearly reveals the successful realization of the hollow structure of magnetite spherical particles
The submicron spheres are composed of nanometer-sized grains
Summary
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.