Abstract

We reconsider the onset of streamwise vortices in the thermal boundary layer flow induced by an inclined upward-facing heated semi-infinite surface placed within a Newtonian fluid. Particular emphasis is laid upon how the induced flow in the isothermal region outside the boundary layer affects the boundary layer itself at higher order, and how this, in turn, affects the stability criterion for the onset of vortices. We find that the stability criterion for thermal boundary layers in air is less susceptible to changes in external geometry than for boundary layers in water. In general, we conclude that the variation of the stability criterion with wedge angle (between the heated and the outer boundary surface) is too great for the theory to predict reliably where disturbances first begin to grow.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.