Abstract

CaWO4 nanoparticles were obtained by facile mechanochemical synthesis at room temperature, applying two different milling speeds. Additionally, a solid-state reaction was employed to assess the phase composition, structural, and optical characteristics of CaWO4. The samples were analyzed by X-ray diffraction (XRD), transition electron microscopy (TEM), and Raman, infrared (IR), ultraviolet-visible (UV-Vis) reflectance, and photoluminescence (PL) spectroscopies. The phase formation of CaWO4 was achieved after 1 and 5 h of applied milling speeds of 850 and 500 rpm, respectively. CaWO4 was also obtained after heat treatment at 900 °C for 12 h. TEM and X-ray analyses were used to calculate the average crystallite and grain size. The Raman and infrared spectroscopies revealed the main vibrations of the WO4 groups and indicated that more distorted structural units were formed when the compound was synthesized by the solid-state method. The calculated value of the optical band gap of CaWO4 significantly increased from 2.67 eV to 4.53 eV at lower and higher milling speeds, respectively. The determined optical band gap of CaWO4, prepared by a solid-state reaction, was 5.36 eV. Blue emission at 425 (422) nm was observed for all samples under an excitation wavelength of 230 nm. CaWO4 synthesized by the solid-state method had the highest emission intensity. It was established that the intensity of the PL peak depended on two factors: the morphology of the particles and the crystallite sizes. The calculated color coordinates of the CaWO4 samples were located in the blue region of the CIE diagram. This work demonstrates that materials with optical properties can be obtained simply and affordably using the mechanochemical method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.