Abstract

Type 2 diabetes mellitus (T2DM) is increasing worldwide, characterized by insulin resistance and hyperglycemia. The results of previous studies have demonstrated that high D-glucose concentrations alter the characteristic and function of adipose tissue-derived mesenchymal stem cells (AT-MSCs). Besides, early growth response factor-1 (EGR-1) and insulin resistance mediators (PTEN and GGPS-1) were highly upregulated in diabetic AT-MSCs (dAT-MSCs) compared with non-diabetic AT-MSCs (nAT-MSCs). In this research, we examined the effect of high glucose concentrations on nAT-MSCs in comparison to dAT-MSCs on the expression of EGR-1, PTEN, and GGPS-1 involved in insulin resistance of human AT-MSCs. The expression of insulin resistance-related genes and EGR-1 protein were analyzed by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and Western blot, respectively. The results show that the high D-Glucose concentrations (25, 50, and 100 mM) enhanced the expression of EGR-1 and insulin resistance-related genes in nAT-MSCs compared with non-treated nAT-MSCs and dAT-MSCs. Notably, the increase of high D-Glucose concentration remarkably upregulated the expression of EGR-1, PTEN, and GGPS-1 in both nAT-MSCs and dAT-MSCs. The effect of high D-glucose concentration (100 mM) remarkably increased the expression of EGR-1, PTEN, and GGPS-1 in human AT-MSCs. The results of this study will expand our knowledge about the impact of high glucose concentration on insulin resistance in human AT-MSCs for the improvement in diabetic treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.