Abstract

Hepatic oxygen consumption (HVO2) and hepatic venous oxygen saturation (ShvO2) were assessed in the isolated perfused rat liver under conditions that mimic critical illness in an effort to assess their utility in predicting the functional status of the liver. Flow rates were adjusted over the physiologic range of oxygen transport as indicated by the hepatic venous O2 saturation range of 10%-75%. HVO2 was found to be transport (HDO2) dependent only when perfusate conditions contained an increased counterregulatory hormone (glucagon, epinephrine, dexamethasone) stimulus or a high lactate concentration. In the absence of a metabolic load, (substrate and hormone-free perfusate), HVO2 was transport independent even at an ShvO2 as low as 10%. Although transport dependency of HVO2 is frequently used to infer tissue ischemia, hepatic oxygen consumption was poorly correlated with synthetic function under all conditions. In contrast, hepatic albumin production was directly related to ShvO2 at all levels of HDO2 and under all perfusion conditions indicating that this metabolic process is particularly sensitive to reductions in oxygen availability, which is more reliably predicted by venous saturation measurements. However, glucose and urea synthesis were almost independent of ShvO2. These findings indicate that various hepatic processes are affected differentially by stress conditions and flow alterations that may exist during critical illness, and protein synthesis is particularly sensitive to oxygen deprivation. Additionally, hepatic venous oxygen saturation measurement, but not HVO2, serves as a useful surrogate marker for hepatic albumin production suggesting that regional venous oximetry may play an important role in the detection of hepatic functional impairment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.