Abstract
Existing studies have shown that the space cooling load oriented to local thermal requirements is significantly influenced by different heat source distributions. However, numerical methods have been mainly used in the analysis based on a fixed airflow field and ignoring the thermal plume. Here, an experiment in a chamber with mixing ventilation was conducted. The heat sources were simulated by metal barrels and an oil-filled radiator, 13 types of heat source distributions were designed and the local cooling load (LCL) was used as the evaluation index. The results show that (1) the LCL is equal to the total amount of heat sources at the steady state in a room with mixing ventilation only if the heat sources are also distributed uniformly; (2) the LCL decreases with a decrease in the intensity of heat sources, achieving a decrease rate of 47.4%–70.8% in the experiment with different intensities; (3) the LCL is 9.2%–22.3% lower than the total amount of heat sources when these are located near the exhaust diffuser or far away from the target zone; (4) owing to its smaller surface area, the LCL with an oil-filled radiator is 7% lower than that with five metal barrels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.