Abstract

The proton transfer resistance of membrane/solution interface is investigated in this paper by employing H 2SO 4 aqueous solution with different concentration. Two commercial cation exchange membranes, Nafion1135 and PE01 membranes with different ion exchange capacity were selected as test membranes; Proton transfer resistance measurements were made by A.C impedance techniques. The proton transfer resistance of membrane/solution interface increases quickly from 0.059 to 2.22 Ω with the decrease of H 2SO 4 concentration from 2.0 to 0.05 mol/L. The ion exchange capacity of the membrane, or more exactly, the surface charge of the membrane has obviously effect on the membrane/solution resistance due to the formation of electrical double layer (EDL). The effect of electrolyte concentration on membrane/solution interface resistance can be explained by the electrical interactions between ions and charged groups of the membrane: high concentration of ions in the medium can compress the EDL and reduce the electrical interactions between ions and charged groups of the membrane.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.