Abstract

Within a framework of 2D magnetohydrodynamic (MHD) simulations, we explore the dynamical regimes initiated by a supernova explosion in a magnetized stratified interstellar medium (ISM). We concentrate on the formation of large-scale magnetic structures and outflows connected with the Parker instability. For the sake of simplicity we only show models with a fixed explosion energy corresponding to a single supernova (SN) occurring in host galaxies with different fixed values of the gravitational acceleration g and different ratios of specific heats. We show that in general, depending on these two parameters, three different regimes are possible: a slowly growing Parker instability on time-scales much longer than the galactic rotation period for small g; the Parker instability growing at roughly the rotation period, which for ratios of specific heats larger than one is accompanied by an outflow resulting from the explosion for intermediate g; and a rapidly growing instability and a strong blow-out flow for large g. By means of numerical simulations and analytical estimates we show that the explosion energy and gravitational acceleration which separate the three regimes scale as Eg2∼constant in the 2D case. We expect that in the 3D case this scaling law is Eg3∼constant. Our simulations demonstrate furthermore that a single SN explosion can lead to the growth of multiple Parker loops in the disc and large-scale magnetic field loops in the halo, extending over 2–3 kpc horizontally and up to 3 kpc vertically above the mid-plane of the disc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.