Abstract
The effects of grain size reduction on the corrosion inhibition of sodium nitrite were investigated using polarization curves and electrochemical impedance spectroscopy (EIS). Nanocrystalline iron (~ 45 nm) was produced by pulse electrodeposition using citric acid bath. The grain size of a nanocrystalline surface was analyzed by X-ray diffractometry (XRD) and field emission scanning electron microscopy (FESEM). The most intensive first-order peak (211) of the XRD patterns was taken for detailed analysis using a Gaussian fitting curve. The tests were carried out in 25 mg / l NaCl + 57 mg / l Na 2 SO 4 with different concentration of sodium nitrite aqueous solutions. The results revealed that due to the adsorption process which leads to the formation of a protective layer with a greater charge transfer resistance the inhibition effect and corrosion protection of sodium nitrite inhibitor in near-neutral aqueous solutions increased as the grain size decreased from microcrystalline to nanocrystalline. The standard free energy of adsorption ( ΔGads ) revealed a strong interaction between inhibitor and nanocrystalline surface. This was attributed to the increased number of the active sites caused by nanocrystalline surface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Modern Physics: Conference Series
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.