Abstract

<p>Salt marshes attenuate waves and currents, thus protecting landward-lying constructed defences and the hinterland from incoming waves and extreme water levels. As such, understanding the stability of the marsh sedimentary platform is important, particularly as marsh edge erosion is common on many shores. To understand why marshes are losing material from their exposed fringes, we must better understand the relations between the marsh fabric and incoming hydrodynamic energy; this is likely to be strongly influenced by marsh biological, geochemical and sedimentological/geotechnical properties. Currently there is little systematic research into the within- and between-marsh variability in these properties and how they affect both marsh edge and marsh surface erosion processes.</p><p> </p><p>We compare Tillingham marsh, eastern England, where the sediment is clay/silt-dominated and the marsh canopy is species-rich, to Warton marsh, Morecambe Bay, NW England, where the sediment is sand/silt-dominated and the vegetation species-poor. We determine soil shear strength by applying geotechnical methods which, to the best of our knowledge, have not previously been applied to salt marsh environments. Shear box and ring shear tests are used to determine the natural- and residual (i.e. post-failure) shear strength of the substrate, respectively. This is expressed as the cohesion of the sediment and the angle of internal friction. We demonstrate that the ring shear test consistently returns a lower angle of internal friction for the substrate, which is expected for the residual angle of internal friction. However, we are also able to link this reduction in the angle of internal friction to substrate composition (e.g. root content, organic matter and particle size distribution). This enhanced methodological understanding will improve our comprehension of marsh resistance to edge erosion and thus our ability to predict future erosion. Ultimately, accurate measurements of the shear strength of natural foreshores are essential for the informed implementation of nature-based coastal flood defences, including ‘de-embankment’/‘managed realignment’ schemes.</p>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.