Abstract

Mechanical properties that are considered to be deterministic in the macro-scale have been shown to be stochastic in the sub-micron length scale. The origin of such stochastic responses is not well understood. This work examines the potential influence of grain boundaries and grain orientations on the stochastic nature of pop-in and hardness measurement in annealed high purity polycrystalline Cu samples during low load nanoindentation. Statistical analysis on pop-in load and hardness showed that variations of these measurements depend on crystal orientations and is influenced by the indenter probe size. Analysis on the pop-in load statistics showed that pop-ins are likely initiate from an atomic sized precursor that leads to dislocation generation or expansion. Variation in hardness measurements near an arbitrary chosen grain boundary and the apparent grain boundary hardening effect observed may be related to the higher density of dislocations at and near the grain boundary.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.