Abstract

Thermally induced singular behavior of an arbitrarily oriented crack in a homogeneous substrate overlaid with a functionally graded coating is considered, within the framework of linear plane thermoelasticity. It is assumed that the graded coating/substrate system is subjected to steady-state thermal loading applied over a finite region at the coating surface and the crack in the substrate is thermally insulated, disturbing the prescribed heat flow. Based on the method of Fourier integral transform and the coordinate transformations of basic field variables in thermoelasticity equations, formulation of the crack problem is reduced to two sets of Cauchy-type singular integral equations for temperature and thermal stresses in the coated medium. In the numerical results, the main emphasis is placed on the investigation of influences of loading, geometric, and material parameters of the coated system on the variations of mixed-mode thermal stress intensity factors. Further addressed are the probable cleavage angles for the incipient growth of the original crack and the corresponding values of effective tensile-mode stress intensity factors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.