Abstract
In the present study, we aimed to validate the type 2 diabetes (T2DM) susceptibility alleles identified in the first genome-wide association study in the hematopoietically expressed homeobox protein (HHEX) gene region (rs1111875 and rs7923837). Furthermore, we investigated quantitative metabolic risk phenotypes of these two variants for association with three key components of the insulin metabolism: insulin secretion, insulin sensitivity and insulin degradation. Two HHEX polymorphisms were genotyped in 1026 subjects from the German MESYBEPO cohort. Complete OGTT data were available for a subset of 420 with normal glucose tolerance (NGT), 282 with impaired glucose tolerance/impaired fasting glucose (IGT/IFG) and 146 diabetic subjects. We validated association of both HHEX polymorphisms with T2DM. In the non-diabetic subcohort including NGT and IFG/IGT subjects, the risk alleles of rs7923837 and rs1111875 were significantly associated with decreased first and second phases of insulin secretion and lower insulinogenic index after oral glucose loading. In healthy, normal glucose-tolerant subjects, the same association of HHEX SNP rs1111875 with OGTT-derived phases of insulin secretion were detectable, however, rs7923837 was only weakly associated with reduced insulinogenic index. For both polymorphisms, no significant correlations with insulin sensitivity were obtained. Reduced insulin clearance was also observed in heterozygous carriers of rs1111875. We validated the association of polymorphisms of the HHEX gene with T2DM in the MESYBEPO cohort. Importantly, variations within the HHEX gene conferred the impaired insulin secretion and changes of insulin degradation but no alteration in insulin sensitivity in carriers of risk alleles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.