Abstract

This paper presented the influence of crystallographic orientation and friction coefficient on the contact stress and fatigue life in the tenon/groove contact region. A rate-dependent crystallographic plastic slip theory was used to calculate the contact stress and fatigue life in [001], [011] and [111] orientations. In the calculation, complex loading conditions and different friction coefficients of 0, 0.2, 0.4, 0.6, 0.8 and 1.0 were taken into account in tenon/groove. Then the relationship between contact stress, fatigue life and friction coefficient was discussed. Simulation results show that: friction coefficient and crystallographic orientation have significant effect on contact stress and fatigue life. Contact stress in [001], [011] and [111] orientation increases with increasing friction coefficient generally. For [001] and [011] orientation, the fatigue life decreases with increasing friction coefficient firstly. When friction coefficient is 0.4, the fatigue life meets its minimum. Then the fatigue life will increase with increasing friction coefficient. For [111] orientation, the change of fatigue life has no obvious trend, and while friction coefficient exceeds 0.6, the life almost constant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.