Abstract
The Bunker Hill Mine in northern Idaho is a large underground lead-zinc mine located in Precambrian metaquartzite rocks with virtually no primary porosity. Ground-water flow through these types of rocks is largely dependent upon the properties of fractures such as joints, faults and relict bedding planes. Ground water that flows into the mine via the fractures is contaminated by heavy metals and by the production of acid water, which results in a severe acid mine drainage problem. A more complete understanding of how the fractures influence the ground-water flow system is a prerequisite to the evaluation of reclamation alternatives to reduce acid drainage from the mine. Fracture mapping techniques were used to obtain detailed information on the fracture properties observed in the New East Reed drift of the Bunker Hill Mine. The data obtained include: (a) fracture type, (b) orientation, (c) trace length, (d) the number of visible terminations, (e) roughness (small-scale asperities), (f) waviness (larger-scale undulations), (g) infilling material, and (h) a qualitative measure of the amount of water flowing through each fracture.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.