Abstract

Microcontact affects the fabrication and assembly of MEMS/NEMS system, the contact between thin film microcavity and microcantilever beam, and the motion of microstructure. In this work, in the microcontact of three-dimensional elastic-plastic Weierstrass-Mandelbrot (W-M) fractal surfaces, influence of fractal dimension was studied based on a comprehensive contact model. With increasing fractal dimension, maximum microcontact force in the plastic deformation zone shows parabolic change; comparably, the intermediate force in elastic zone parabolically varies. For both the forces, the minimum values are obtained when the fractal dimension is 2.5. Besides, in the plastic deformation zone, the real contact areas increase with the fractal dimension. Experiments were completed to compare with the numerical analysis. The results show that the simulated contact force curve is in line with the experimental load curve when Young’s modulus E and hardness H are equal to the actual measured values. Nevertheless, it will greatly deviate from the experimental load curve when E and H differ from the measured values.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call