Abstract
The thermomechanics of energetic and inert particulate composite materials are of pronounced interest in the defense community. This work seeks to further characterize the macroscale, thermal and mechanical response of these materials under various near-resonant mechanical excitations. The fabrication of mock energetic samples based on the PBXN-109 formulation, comprised of hydroxyl-terminated polybutadiene (HTPB) binder with 85% solids loading and varying additive content (0%, 15%, and 30%) of sucrose and/or spherical aluminum crystals, enabled a systematic investigation into the effect of formulation variation on the thermal and mechanical response. Experiments were also performed on insulated plate samples of identical composition to examine the effect of varying thermal boundary conditions. In each of these experiments, the samples were mechanically excited using an electrodynamic shaker, while their thermal and mechanical responses were recorded using an infrared camera and scanning laser Doppler vibrometer, respectively. The investigation of these responses aids in the effort to characterize and understand the behavior of polymer-bonded explosives under mechanical excitation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.