Abstract

Despite the theoretical link between foot hyperpronation and biomechanical dysfunction of the pelvis, the literature lacks evidence that confirms this assumption in truly hyperpronated feet subjects during gait. Changes in the kinematic pattern of the pelvic segment were assessed in 15 persons with hyperpronated feet and compared to a control group of 15 persons with normally aligned feet during the stance phase of gait based on biomechanical musculoskeletal simulation. Kinematic and kinetic data were collected while participants walked at a comfortable self-selected speed. A generic OpenSim musculoskeletal model with 23 degrees of freedom and 92 muscles was scaled for each participant. OpenSim inverse kinematic analysis was applied to calculate segment angles in the sagittal, frontal and horizontal planes. Principal component analysis was employed as a data reduction technique, as well as a computational tool to obtain principal component scores. Independent-sample t-test was used to detect group differences. The difference between groups in scores for the first principal component in the sagittal plane was statistically significant (p = 0.01; effect size = 1.06), but differences between principal component scores in the frontal and horizontal planes were not significant. The hyperpronation group had greater anterior pelvic tilt during 20%-80% of the stance phase. In conclusion, in persons with hyperpronation we studied the role of the pelvic segment was mainly to maintain postural balance in the sagittal plane by increasing anterior pelvic inclination. Since anterior pelvic tilt may be associated with low back symptoms, the evaluation of foot posture should be considered in assessing the patients with low back and pelvic dysfunction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.