Abstract

Using an in vitro rat incisor odontoblast system, the effect of fluoride on proteoglycans was investigated at both the metabolic and structural level. Incisors were removed from 4-week-old rats, split longitudinally, and the pulps removed. Teeth were incubated at 37 degrees C, 5% CO2 in Eagle's Minimum Essential Medium containing 35S-sulfate for 7 hours in the presence of 0 mM, 3 mM, or 6 mM sodium fluoride. Teeth were demineralized in EDTA, proteoglycan was extracted from the residue with 4 M guanidinium chloride, and further purified by anion exchange chromatography. Uptake of radiolabel was monitored by liquid scintillation counting. The resultant products were examined by cellulose acetate electrophoresis, SDS-PAGE, chondroitinase digestion, and amino acid analysis. Differential effects of fluoride were observed in both metabolism and biochemical characterization of proteoglycans following incubation at the two concentrations. Fluoride decreased uptake of the radiolabel but led to an accumulation of glycosaminoglycan within the proteoglycan of the matrix. Chondroitin sulfate was the predominant glycosaminoglycan identified, with the additional presence of dermatan sulfate and heparan sulfate identified. Dermatan sulfate levels increased in 3 mM-treated teeth. Fluoride-treated proteoglycans had a reduced molecular weight (200-90K to 180-79K); this reduction is primarily a result of smaller glycosaminoglycan chains, with limited reduction in the size of the core protein of 6 mM-treated teeth occurring. Such alterations in the biochemical metabolism and hence structure and function of proteoglycan may be implicated in the hypomineralization seen in fluorosis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.