Abstract

To obtain a quantitative understanding of the effect of fluid flow on the microstructure of cast alloys, a technical Al-7 wt pct Si-0.6 wt pct Mg alloy (A357) has been directionally solidified with a medium temperature gradient under well-defined thermal and fluid-flow conditions. The solidification was studied in an aerogel-based furnace, which established flat isotherms and allowed the direct optical observation of the solidification process. A coil system around the sample induces a homogeneous rotating magnetic field (RMF) and, hence, a well-defined flow field close to the growing solid-liquid interface. The application of RMFs during directional solidification results in pronounced segregation effects: a change to pure eutectic solidification at the axis of the sample at high magnetic field strengths is observed. The investigations show that with increasing magnetic induction and, therefore, fluid flow, the primary dendrite spacing decreases, whereas the secondary dendrite arm spacing increases. An apparent flow effect on the eutectic spacing is observed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.