Abstract
This study investigated the relationships between the sensations of sweaty, damp, muggy and clingy, as assessed by human response from wearer trial garment assessment, and fiber type, fiber, yarn and fabric properties and instrumental fabric measurements of next-to-skin knitwear. Wearer trial assessment of 48 fabrics followed a strict 60 minute protocol including a range of environmental conditions and levels of exercise. Adjusted mean weighted scores were determined using linked garments. Instrumental fabric handle measurements were determined with the Wool HandleMeter (WHM) and Wool ComfortMeter. Data were analyzed using forward stepwise general linear modeling. Mean fiber diameter (MFD) affected the sweaty, damp, muggy and clingy sensation responses accounting for between 23.5% and 56.2% of the variance of these sensations. In all cases, finer fibers were associated with lower sensation scores (preferred). There were also effects of fiber type upon sweaty, muggy and clingy scores, with polyester fiber fabrics having higher scores (less preferred) compared with fabrics composed of wool, particularly for peak sweaty scores in hot and active environments. Attributes such as fabric density, yarn linear density, knitting structure and finishing treatments, but not fabric thickness, accounted for some further variance in these attributes once MFD had been taken into account. This is explained as finer fibers have a greater surface area for any given mass of fiber and so finer fibers can act as a more effective sink for moisture compared with coarser fibers. No fabric handle parameter or other attribute of fiber diameter distribution was significant in affecting these sensation scores.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.