Abstract
The study aimed to assess the marginal, axial, and internal adaptation, as well as the fracture resistance of zirconia-reinforced lithium silicate (ZLS) endocrowns with varying pulpal inlay extensions and marginal geometry. Sixty extracted maxillary first molar teeth were divided into six groups (n = 10) according to pulpal inlay extension and marginal configuration. The first three groups (J2, J3, and J4) utilized prepared teeth for endocrowns without ferrule design and 2 mm, 3 mm, and 4 mm pulpal extensions, respectively. The second three groups (F2, F3, and F4) utilized prepared teeth with 1 mm shoulder margins and 2 mm, 3 mm, and 4 mm pulpal extensions. The endocrowns were fabricated from ZLS blocks using CAD/CAM milling technology. After cementation, the specimens underwent thermal aging for 5000 cycles and were evaluated for marginal adaptation. Using a universal testing machine, the fracture resistance was tested under quasistatic loading (1 mm/min). Two-way ANOVA and the Tukey's post hoc test were employed for data analysis (p ≤ 0.05). The results of this study revealed that endocrowns without ferrule exhibited superior fracture strength than a 1 mm ferrule design p < 0.05, irrespective of the inlay depth. All designs with and without ferrule and all inlay depths showed clinically acceptable marginal and internal fit. The conventional endocrown design without ferrule and 2 mm inlay depth showed the lowest surface gap. The pulpal surface showed the highest discrepancy among all groups compared to the other surfaces. Endocrowns without ferrule are more conservative and have higher fracture strength than 1 mm ferrule designs; extending the inlay depth showed a significant increase in fracture resistance of the 1 mm ferrule design, but not for the conventional design without ferrule and 2 mm inlay depth. All groups exhibited a high auspicious fracture strength value for molar endocrown restorations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.