Abstract

AbstractA number of studies have been reported in the literature on the polymerization and thermal decomposition of epoxide resins. Lee1 and Anderson2 have both studied the thermal decomposition of epoxy resins, and they concluded that the characteristic exothermic peak (which can occur anywhere between 300° and 400°C) is caused at least partially by some reaction of the epoxide group. We have been investigating the thermal decomposition of an aromatic polyether resin which is produced by curing the diglycidyl ether of bisphenol A (Epon 825) with the catalytic agent trimethoxyboroxine (Fig. 1). DTA studies of the polyether in an inert atmosphere of N2 showed exothermic peaks at approximately 390°, 430°, and 470°C, with the major exotherm being the one at 430°C. Our investigation has shown the important role played by low molecular weight epoxides in these exothermic reactions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call