Abstract

Mandibular distraction osteogenesis is a clinical procedure used for modifying the mandibular geometry when problems of dental overcrowding and arch shrinkage occur. The objective of this study is to use a computational model of tissue differentiation to examine the influence of the rate of distraction on bone re-growth within the fracture callus of a human mandible submitted to symphyseal distraction osteogenesis. A 3D model of the mandible is reconstructed from CT scan data and meshed into finite elements. Two different mastication loadings have been investigated: a 'full' mastication load and a 'reduced' mastication load where the action of each muscle was reduced by 70%. Four different distraction rates were analyzed: 0.6, 1.2, 2, and 3 mm/day, allowing a total displacement of 6 mm. In the early stages of the distraction process it is predicted that there is a decrease in the amount of bone tissue forming within the center of the fracture gap for all distraction rates. After the initial phases of expansion, the bone tissue within the callus increases for the slower rate of distraction or continues to decrease at the faster rates of distraction. At the end of the simulated maturation period, 47% of the distracted callus was predicted to consist of bone tissue for a distraction rate of 0.6 mm/day, decreasing to 22% for a distraction rate of 3 mm/day. Significantly higher amounts of bone formation were predicted for all distraction rates for the case of reduced mastication loading. Disparities between the model predictions and what is observed in vivo were found. For instance, during the latency period, the distraction period and beyond, the model is predicting larger than expected amounts of cartilage tissue formation within the callus. This and other limitations of the proposed model are discussed and possible specific explanations for these disparities are provided in the paper. The model predicts a distraction rate of around 1.2 mm/day to be optimal as higher rates produce less bone tissue while the risk of a premature bone union is greater at slower rates of distraction because in the latter stages of the distraction process bone tissue is predicted to form between the left and right side of the bone callus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.