Abstract

ABSTRACTUnderground transportation systems often involve multiple tunnels constructed closely together. Previous studies mainly focus on interaction between circular tunnels; by contrast, interaction mechanisms involving non-circular tunnels are not well understood. In this study, four physical three-dimensional centrifuge tests were performed in dry sand, simulating the response of existing circular and horseshoe-shaped tunnels to a newly excavated tunnel. Two different ratios between pillar depth and tunnel diameter (P/D) of 0.5 and 2.0 were considered. Furthermore, three-dimensional numerical back-analyses considering small-strain stiffness were undertaken. Results reveal that the ground settlement above an existing horseshoe-shaped tunnel is less sensitive to pillar depth than for circular ones. Furthermore, for P/D = 0.5, the existing horseshoe-shaped tunnel experiences both vertical and horizontal compression; more stress reduction occurs vertically than horizontally. A circular tunnel for the same pillar depth becomes compressed vertically but elongated horizontally; stress reduction around the existing circular tunnel is less vertically than horizontally. However, for P/D = 2.0, both types of tunnel become elongated vertically and compressed horizontally because of a larger reduction in vertical stresses than horizontal ones. These results demonstrate that both pillar depth and shape profoundly affect tunnel deformation mechanisms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call