Abstract

The ability of the atomic-force microscope (AFM) to detect interaction forces between individual biological molecules has recently been demonstrated. In this study, force measurements have been obtained between AFM probes functionalized with the beta-subunit of human chorionic gonadotrophin (betahCG) and surfaces functionalized with anti-betahCG antibody. A comparison of the obtained results with previous anti-ferritin antibody-binding data identifies differences when the antigen molecule expresses only a single epitope (betahCG), rather than multiple epitopes (ferritin), for the monoclonal antibodies employed. Specifically, the probability of observing probe-sample adhesion is found to be higher when the antigen expresses multiple epitopes. However, the periodic force observed in the adhesive-force distribution, due to the rupture of single antigen-antibody interactions, is found to be larger and more clearly observed for the mono-epitopic system. Hence, these findings indicate the potential of the AFM to distinguish between multivalent and monovalent antibody-antigen interactions, and demonstrate the influence of the number of expressed epitopes upon such binding studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.