Abstract

Field data of tidal current speeds collected January 9–31, 1990, in Sebastian Inlet, which connects the Atlantic Ocean and the Indian River Lagoon on the east coast of central Florida, show that the average Eulerian and Stokes residual currents are both lagoonward. This pattern can be used to explain the long-term trend of accumulations of marine sediments on the flood tidal delta adjacent to the lagoon end of the inlet. Numerical model results indicate that the long-term Stokes residual current is mainly determined by the tidal characteristics of the lagoon and ocean, and subsequently, are less variable. The long-term lagoonward Eulerian current, on the other hand, is interrupted by episodic weather events such as frontal storms. Storms can cause the abrupt superelevation of instantaneous water-levels on the lagoon side of the inlet. The short-lived pulses of freshwater inflow into the lagoon associated with storms could be discharged through the inlet instantaneously. Both the instantaneous superelevation of lagoon water levels and freshwater outflow can cause temporary reversal of Eulerian residual current in the inlet. Therefore, the general residual flow pattern in Sebastian Inlet is not only determined by the tidal characteristics of the Atlantic Ocean and Indian River Lagoon but also by the wind and precipitation associated with episodic storms, and by the long-term mean sea-level difference between the lagoon and the ocean.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.