Abstract

The influence of elemental composition and surface topography of substrates on the adhesion, proliferation and early differentiation stages of mouse osteoblasts, line MC3T3-E1, cultured on the surface of titanium and multicomponent bioactive nanostructured films (MuBiNaFs) Ti-Ca-(P)-C-O-N and Ti-Ca-Si-C-O-N has been studied. Osteoblasts spread both on the surface of uncoated titanium samples and on the samples coated with the films and had more elongated and irregular shape than the cells cultured on control glass substrate. Immunofluorescence study has shown that osteoblasts formed straight actin bundles associated with focal contacts. Osteoblasts on titanium films formed fewer focal contacts than the cells cultured on Ti-Ca-(P)-C-O-N films. The sandblast treatment did not affect the distribution of the focal contacts and actin structures within the cells. Osteoblasts actively divided on the surface of Ti-Ca-(P)-C-O-N and Ti-Ca-Si-C-O-N films and alteration of surface topography did not affect their growth rate. The quantitative colorimetrical test on alkaline phosphatase activity has shown that modification of surface topography does not affect the level of osteoblastic differentiation. Thus, the elemental composition plays an important role in the interaction of osteoblasts with the surface of films, while the modification of the surface topography in the range of Sq from 0.4 to 1 μm does not influence adhesion, proliferation, and differentiation of osteoblasts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call