Abstract

PurposeThe present study details characterisation of the electrostatic properties of a range of active pharmaceutical ingredients (APIs) and blends and investigates the role of electrostatics as a potential root cause of punch sticking during tabletting. MethodsMicrocrystalline cellulose (AVICEL® PH-102) and magnesium stearate were used to prepare blends of constant drug loading (10% w/w) with a range of APIs. The electrostatic properties of the APIs and blends were then determined using a JCI Chilworth 155v6 Charge Decay Time Analyser (CDTA) under controlled environmental conditions. The measurements recorded were then correlated to a punch sticking assessment of each blend, which was obtained utilising a Material Adhesion Screen for Sticking (MASS) Punch. ResultsThe APIs became electrostatically charged to a higher extent than the blends. The linear relationship between particle punch sticking and the maximum surface voltage (Vs) attained post charging was poor (R2=0.58). However, a reduction in the susceptibility of the blend to retain electrostatic charge, as determined by the measurement of charge decay times (Time 1/e and Time 10%), was found to be linearly proportional (R2=0.89 and 0.88 respectively) to the sticking propensity. ConclusionDespite the excipients significantly damping the charging propensity of the API in a formulation, the electrostatic behaviour and punch sticking propensity of the majority of the formulated blends were shown to be dominated by the API (even at only 10% w/w). It is anticipated that the use of formulations with fast charge decay rates may reduce sticking problems during tablet production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.