Abstract

The microfissuring in the heat-affected zone (HAZ) of electron-beam-(EB-) welded thermomechanically processed INCOLOY 903 has been studied with a view to reducing the incidence of microfissuring and to obtaining a better understanding of the influence of EB welding parameters on it. For a given heat of material, microfissuring susceptibility has been quantitatively related to EB welding parameters and the shape of the weld pool. Fractional factorial experimental study of welding parameters showed that a reduction in welding speed and an increase in EB current for a given heat input would minimize HAZ microfissuring in the alloy. It was observed that with lower travel speeds, bccause of the shallower temperature gradients in the HAZ, the amount of liquated grain boundary area is less, thus leading to decreased microfissuring. Considerable HAZ microfissuring was observed on the coarse grain boundaries of warm-worked grains. The microfissures appeared to initiate in regions slightly removed from the fusion line. Minimal microfissuring was observed on the grain boundaries of fine recrystallized grains. These boundaries, however, had a thickened appearance bccause of the formation of Nb-enrichedy phase by the process of grain boundary liquid film migration (LFM). The origin of the liquid on the grain boundaries is suggested to be due to the constitutional liquation of preexisting primary carbides (partial), fine MC carbides, and MNP-type phosphides. It is suggested that substantial occurrence of LFM in the HAZ minimizes microfissuring by decreasing the total temperature range of solidification and also by enabling the grain boundary liquid to solidify without the occurrence of low-melting terminal eutectic reaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.