Abstract

BackgroundTo assess a possible signal drift, noise and influences of electromagnetic radiation on the measurement behaviour of the Triggerfish® contact lens sensor, which might be mistaken as IOP fluctuations.MethodsContact lens sensors (Triggerfish®, SENSIMED AG, Lausanne, Switzerland) were fixed in a water bath. To reduce any external electromagnetic impulses, all plugs were removed from the sockets, no lights were switched on and no electronic devices, except a temperature logger were left in the test room. For 24 h signal drift, noise and the influences of a cordless telephone (Ascom d43 DECT Handset, EU DECT 1880–1900 MHz, Ascom Wireless, Baar, Switzerland), a smartphone (Sony Xperia Go ST27i, Sony Corporation, Tokyo, Japan) and a computer (Hewlett-Packard ProBook 650 15,6″ - D9S33AV, Hewlett-Packard Inc., Palo Alto, USA) on the measuring profile were analysed.ResultsTwenty-four-hour measurements without provoked external electromagnetic impulses yielded a profile without any signal drift and 8.2 mV eq noise. During the activation of the cordless telephone a maximum measurement variation of 3.2 mV eq. (4.1–7.3), smartphone 1.8 mV eq. (4.7–6.5) and computer 1.4 mV eq. (6.3–7.7) were observed.ConclusionsDuring 24-h measurements there was no signal drift and a very low noise. Patients concerned about electronic devices possibly interfering with the measurements of the contact lens sensor, can be informed, that the use of their cordless telephone, smartphone or computer does not cause any problems. The amount of the signal noise might help to define actual IOP fluctuations. Temperature fluctuations might influence the measuring profile.

Highlights

  • To assess a possible signal drift, noise and influences of electromagnetic radiation on the measurement behaviour of the Triggerfish® contact lens sensor, which might be mistaken as intraocular pressure (IOP) fluctuations

  • The aim of this study was to assess, whether there is a significant level of signal drift or noise during the 24-h measuring period preventing the identification of IOP fluctuations

  • Two new Triggerfish® contact lens sensors were fixed in their original holders in a water bath

Read more

Summary

Introduction

To assess a possible signal drift, noise and influences of electromagnetic radiation on the measurement behaviour of the Triggerfish® contact lens sensor, which might be mistaken as IOP fluctuations. The main risk factor for glaucoma diseases is an increased intraocular pressure (IOP) exceeding an individual threshold. Several measurements over the 24-h period would make sense since the IOP is not a constant, but an individually variable measured value with a minimum and a maximum [1]. These changes in the daytime are called fluctuations, and their causes may be manifold.

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.