Abstract

The effects of ionic conductivity and buffer concentration of electrolytes used for in vitro measurement of the charge-injection limits of activated iridium oxide (AIROF) neural stimulation electrodes have been investigated. Charge-injection limits of AIROF microelectrodes were measured in saline with a range of phosphate buffer concentrations from [PO43−] = 0 to [PO43−] = 103 mM and ionic conductivities from 2–28 mS cm−1. The charge-injection limits were insensitive to the buffer concentration, but varied significantly with ionic conductivity. Using 0.4 ms cathodal current pulses at 50 Hz, the charge-injection limit increased from 0.5 mC cm−2 to 2.1 mC cm−2 as the conductivity was increased from 2 mS cm−1 to 28 mS cm−1. An explanation is proposed in which the observed dependence on ionic conductivity arises from non-uniform reduction and oxidation within the porous AIROF and from uncorrected iR-drops that result in an overestimation of the redox potential during pulsing. Conversely, slow-sweep-rate cyclic voltammograms (CVs) were sensitive to buffer concentration with the potentials of the primary Ir3+/Ir4+ reduction and oxidation reactions shifting ∼300 mV as the buffer concentration decreased from [PO43−] = 103 mM to [PO43−] = 0 mM. The CV response was insensitive to ionic conductivity. A comparison of in vitro AIROF charge-injection limits in commonly employed electrolyte models of extracellular fluid revealed a significant dependence on the electrolyte, with more than a factor of 4 difference under some pulsing conditions, emphasizing the need to select an electrolyte model that closely matches the conductivity and ionic composition of the in vivo environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.