Abstract

The aim of this study is to examine the relationship between fracture energy and the ductile area measured on the fracture surface. Instrumented Charpy tests and fracture toughness tests are performed in the transition temperature range, as well as at lower temperatures. Quantitative fractographic analyses of Charpy specimens reveal a certain proportion of ductile fracture even if the Charpy test is conducted at low temperatures, below the transition temperature. The ductile fracture area situated next to the notch is correlated to fracture energy for all temperatures. In the transition temperature range, fracture energy and the ductile area have a large scatter. Since the limiting event in the development of the ductile area is the initiation of cleavage, the maximum principal stress has been computed in different specimens using the finite element method. It has been shown that the propagating ductile crack does not increase the stress level, but does increase the probability of cleavage fracture through an expansion of the plastic volume where weak points can be found.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.