Abstract

This study aims to explore the role of soluble programmed cell death protein 1 (sPD-1) in individuals with hepatocellular carcinoma (HCC) undergoing treatment with drug-eluting beads transarterial chemoembolization (D-TACE). Additionally, we aim to assess the potential utility of sPD-1 for determining the optimal timing for combining D-TACE with immune checkpoint inhibitors (ICIs). A total of 44 HCC patients eligible for D-TACE and 55 healthy volunteers were enrolled in this study. Three milliliters of peripheral venous blood from the patients were collected on the day before D-TACE and 3, 7, and 30 days after D-TACE, respectively, for the assay of sPD-1. The relationships between sPD-1 levels, clinical features, outcomes, and the fluctuation of sPD-1 during treatment were analyzed. The initial sPD-1 levels in patients were found to be significantly higher than those in the control group. Although the initial sPD-1 levels displayed a decreasing trend with an increase in BCLC stage, no significant differences were observed among patients at different BCLC stages. The sPD-1 level on day 3 after D-TACE was similar to that on day 7 after D-TACE and significantly lower than the initial level. The sPD-1 level on day 30 after D-TACE was significantly higher than that on day 3 and day 7 after D-TACE and nearly returned to the initial level before D-TACE. The level of sPD-1 was found to be significantly elevated in patients with HCC. However, further research is deemed necessary to fully understand the role of sPD-1 as a potential biomarker in the initiation, progression, and prognosis of HCC. The decrease in sPD-1 following D-TACE suggests that immune effector cells might potentially be reduced, as well as immune function weakened, highlighting the need to avoid the prompt administration of ICIs after D-TACE.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call