Abstract

AbstractOn western Spitsbergen, Svalbard, the amount of winter precipitation is insufficient to maintain the present-day mass balance of the local glaciers. Additional snow mass must be added to the precipitation to reach the observed accumulation rates of the glaciers. It was assumed in previous work that this additional mass is transported onto the glaciers by drifting snow and snow avalanches. This study is a first attempt to quantify the amount of snow mass added to the glacier mass balance by wind-transported snow. The wind field over an area of 60 × 50 km2 on western Spitsbergen was simulated for 24 idealized weather types by a mesoscale meteorological model on a 750 m grid. The resulting wind velocities and directions were coupled to a two-level snowdrift model. The model output clearly shows erosion and accumulation areas in the terrain. Comparison with the present glacier locations suggests that the glacier accumulation areas coincide with low wind speeds. Moreover, exposed areas with high wind speeds are mostly glacier-free in reality. Thus, the wind field and corresponding snowdrift gives an indication of the location of the present glaciers on western Spitsbergen.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call