Abstract

The development of mineral deposits causes changes that are comparable to natural exogenous geological processes, and prevail over the latter in local areas of intensive mining activity. In this article, a diamond deposit is selected, developed by quarries of great depth, and a forecast is made of the impact of drainage water discharge on changes in the composition of surface water and bottom sediments during the entire period of development of the deposit. Modeling was performed according to various scenarios, taking into account changes in the total dissolved solids of groundwater from 0.5 to 21.7 g/kg H2O. Thermodynamic calculations were carried out using the HCh software package. The role of dissolved organic carbon in the migration of chemical elements and the effect of DOC on the precipitation of chemical elements from mixed solutions is given. It has been established that fulvic acid completely binds to Fe in the Fe(OH)2FA− complex in all types of natural waters and under all mixing scenarios. With humic acid, such a sharp competitive complex formation does not occur. It is distributed among the various elements more evenly. It was determined that the mass of precipitating iron in the presence of DOC decreases by 18–27%, and its precipitation in winter is more intense. In contrast to Fe, the precipitation of Ca, Mg, and C from solutions with DOC is higher in summer, and there are more of them in the solutions in winter. This study contributes to a better understanding of the behavior of heavy metals in surface waters and sediments under anthropogenic pressures in order to improve the sustainable management of water resources in the face of anthropogenic activities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.