Abstract

Distortion product otoacoustic emissions (DPOAEs) are evoked by two stimulus tones with frequency f1 and f2 of ratio f2/f1 in the range between approximately 1.05 and 1.4. This study theoretically and experimentally analyzes the cubic 2f1-f2 DPOAE for different stimulus levels of one of the tones while the other is constant. Simulations for f2/f1 of 1.2 and moderate stimulus levels (30-70 dB sound pressure level) indicate that cubic distortion products are generated along a relatively large length of the basilar membrane, the extent of which increases with stimulus level. However, apical from the place of maximum nonlinear force, the wavelets generated by these distributed sources mutually cancel. Therefore, although the spatial extent of the primary DPOAE sources broadens with increasing stimulus level (up to 1.5 oct), the basilar-membrane region contributing to the DPOAE signal is relatively narrow (0.6 oct) and level independent. The observed dependence of DPOAE amplitude on stimulus level can be well-approximated by a point source at the basilar-membrane place where the largest distortion product (maximum of the nonlinear force) is generated. Onset and offset of the DPOAE signal may contain amplitude overshoots (complexities), which are in most cases asymmetrical. Two-tone suppression was identified as the main cause of these onset and offset complexities. DPOAE measurements in two normal-hearing subjects support the level dependence of the steady-state DPOAE amplitude and the asymmetry in the onset and offset responses predicted by the theoretical analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call