Abstract

When compared to a long-straight chain terminal alkyne, a long chain terminal alkyne with a distal isopropyl unit (isobranched) isomerizes about two times faster when treated with strong base under identical conditions, and appears to follow pseudo first order kinetics. In both cases, equilibration to a 95–97:5–3 mixture of terminal:internal alkyne accompanies isomerization. The difference in rate may be due to an unusual folding of both long-chain alkynes, bringing the distal substituent close to the carbon-carbon-triple bond moiety. The distal isopropyl moiety may provide unanticipated steric hindrance that disrupts such folding, making the propargylic proton more available for reaction with base.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.